
Lambda Calculus
Sampa Das

Assistant Professor., Computer Science and Engineering, WBUT ,
Siliguri Institute Of Technology, Darjeeling, India

Abstract: : In this work, we present preliminary study of
Lambda Calculus in the field of computability .Originally
developed in order to study some mathematical properties of
effectively computable functions, this formalism has provided
a strong theoretical foundation for the family of functional
programming languages. We show how to perform some
arithmetical computations using the lambda calculus and how
to dene recursive functions, even though functions in lambda
calculus are not given names and thus cannot refer explicitly
to themselves.

Keywords: Variables, Syntax, Semantic.

1. INTRODUCTION

The lambda calculus is a theory of functions as formulas. It
is a system for manipulating functions as
expressions[1].Lambda calculus(also written as λ)is a
formal system in mathematical logic and computer science
for expressing computation based on function abstraction
and application using variable binding and substitution
.The name is derived from Greek letter lambda(λ) . Lambda
Calculus has played an important role in the development
of theory programming language. Counterparts to lambda
Calculus. We have several options regarding types in the
lambda calculus.
 Untyped lambda calculus. In the untyped lambda calculus,
we never specify the type of any expression. Thus we never
specify the domain or co-domain of any function. This
gives us maximal flexibility. It is also very unsafe, because
we might run into situations where we try to apply a
function to an argument that it does not understand.
 Simply-typed lambda calculus. In the simply-typed lambda
calculus, we always completely specify the type of every
expression. This is very similar to the situation in set
theory. We never allow the application of a function to an
argument unless the type of the argument is the same as the
domain of the function.
Thus, terms such as f (f) are ruled out, even if f is the
identity function.

Polymorphic typed lambda calculus. This is an
intermediate situation, where we may specify, for instance,
that a term has a type of the form X → X for all X, without
actually specifying X[2].

2.EXPRESSING LAMBDA CALCULUS

The lambda calculus is a formal language. The expressions
of the language are called lambda terms, and we will give
rules for manipulating them.

A. THE SYNTAX
The syntax of the lambda calculus defines some
expressions as valid lambda calculus expression and some
as invalid, just as some strings of characters are valid C
programs and some are not. A valid lambda calculus
expression is called a "lambda term" .The following three
rules give an inductive definition that can be applied to
build all syntactically valid lambda terms:
• A variable, x , is itself a valid lambda term
• If t is a lambda term, and is a variable ,then (λx.t) is
a lambda term (called a lambda abstraction);
• If t and s are lambda terms, then (ts) is a lambda term
(called an application).
Nothing else is a lambda term. Thus a lambda term is valid
if and only if it can be obtained by repeated application of
these three rules. However, some parentheses can be
omitted according to certain rules. For example, the
outer most parentheses are usually not written.

a. The Lambda Variables
When a variable occurs in the body of an abstraction
that uses the variable in its parameter, the occurrence of
this variable inside the body is called bound, because
the occurrence is bound to this binder abstraction. If a
variable occurs at a position such that there is no such
outer binding abstraction, the occurrence of the variable
is called free. For example, in term (λx.x) y, y is free. In
λy.xy, x is free. In term λx.x x, all occurrences of x inside
the body are bound. In (λx.x)x, first occurrence of x (inside
the body) is bound, and the second occurrence is free. In
λz.λx.λy.x y z, the occurrences of x, y and z in the body
have their respective binder abstractions. After
reducing(λz.λx.λy.x y z)a, where a is just a variable term,
we obtain (λx.λy.xya), in which, a is a free variable.
 Free and bound variables
In calculus all names are local to definitions. In the
function λx:x we say that x is bound" since its occurrence
in the body of the dentition is preceded by x. A name not
preceded by a is called a free variable". In the expression
(λx:xy) the variable x is bound and y is free.

Fig: Lambda Function
Source:.http://www.cs.unr.edu/~sushil/class/326/notes
/wk7.1.html

Sampa Das / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8255-8258

www.ijcsit.com 8255

In the expression
 (λx:x) (λy:yx)
 the x in the body of the first expression from the left is
bound to the first λ. The y in the body of the second
expression is bound to the second λ and the x is free. It is
very important to notice that the x in the second expression
is totally independent of the x in the first expression.
Formally we say that a variable <name> is free in an
expression if one of the following three cases holds:
 * <name> is free in <name>.
 * <name> is free in λ <name1 > : <exp> if the identifier
<name>!<name1 > and <name> is free in <exp>.
 * <name> is free in E1E2 if <name> is free in E1 or if it is
free in E2. A variable <name> is bound if one of two cases
holds:
* <name> is bound in <name1 > : <exp> if the identifier
<name>=<name1 >or if <name> is bound in <exp>.
* <name> is bound in E1E2 if <name> is bound in E1 or if
it is bound in E2.
It should be emphasized that the same identifier can occur
free and bound in the same expression. In the expression
 (λx:xy) (λy:y)
the first y is free in the parenthesized sub expression to the
left. It is bound in the sub expression to the right. It occurs
therefore free as well as bound in the whole expression [4].

b. LAMBDA (λ) REDUCTION
The key notion of the λ-calculus is that it is possible to
arrive at logically equivalent expression by means of a
process called λ-reduction. In the usual case, λ-reduction is
actually a combination of three distinct reduction
operations, each of which is discussed below. The key
operation, the one that does the heavy lifting, is called β-
reduction, and that is operation we will discuss first. By the
way, some people say "λ-conversion" instead of λ-
reduction; others reserve "λ-conversion" to refer
specifically to a single step in a series of reductions.

1. β - REDUCITON
Nothing happens until a λ-binding form occurs in
construction with an argument, thus: ((λ
var.body).argument) Once a λ-based binding form occurs
with an argument like this, it is possible to reduce the
expression to a simpler form by means of β-reduction
(sometimes with the help of α-reduction and η-reduction).
The main idea of β-reduction is to replace every free
occurrence of the variable "var" in "body" with
"argument". For instance, in the form below, both
occurrences of "var" in the body are free. Consequently,
after β-reduction, both occurrences get replaced with
"argument", and the result is significantly simpler than the
original expression.
The beta reduction is perhaps the most intuitive reduction,
but is also the most important in analyzing lambda
expressions. It is, in essence, a direct substitution, and it
goes something like this:
((λ (x) . BODY) a) ->β BODY [x λa]= BODY
Lets look at this step by step.
 ((\ (x) . BODY) a)

As you should already know, this first part defines a
function which takes an argument 'x' and puts it into
'BODY'. In this instance, we are looking to pass 'a' to that
function. This is the expression on which we want to
perform our beta reduction.
 ->β BODY [x λ a] = BODY
Here is our beta reduction. First we explicit say we are
doing a beta reduction, then the BODY [x\a] part means
"In 'BODY', I am substituting all instances of 'x' with 'a'".
Because there is no 'x' in BODY, no substitution is actually
made. After this (or on the next line) you write the result.

2. α - REDUCITON
Unfortunately, applying β-reduction indiscriminately can
cause trouble when the body contains binding operators.
Following the rules of β-reduction, we replace "x" with "z"
for a result of "(λ y1 (z y1))", and this result is correct.
Note that in the result the λ-operator binds exactly one
variable in the body, and the other variable remains free.
But consider what happens in this closely parallel but
slightly different situation:
((λ x (λ y (x y))) y) β-reduction: substitute "y" in for "x" in
the body "(λ y (x y))" ==>(λ y (y y)) [Wrong result!]))", in
which the λ-operator binds two variables, not just one,
which is not correct. The argument variable "y" is said to
have been `captured' by the inner λ-operator; another
commonly-used expression for this kind of situation is
`variable collision'. The solution is to make use of
alphabetic variants. Roughly, two expressions are
"alphabetic variants" if they are identical except perhaps
for the choice of variable symbols. For instance, the
following expressions are alphabetic variants of one
another:
 (λ x (λ y (x (+ y x))))
 (λ z (λ y (z (+ y z))))
To create an alphabetic variant for an expression of the
form "(λ var body)", simply replace each free occurrence of
"var" in the expression with "new", where "new" is a
variable symbol not occurring anywhere in "body". (Since
expressions have finite length, as long as there is an infinite
supply of variable symbols, it will always be possible to
find a suitable variable to serve the role of "new".) This
transformation is called α-reduction. The crucial property
of the reduced form is that each λ operator binds the same
number of variables in the same positions within its
body.[3].
An alpha reduction is hardly a reduction at all. It could be
otherwise called, "renaming," but must be done with some
care to make sure that one does not alter the scope of a
variable when renaming it. Lets look at an example:
 (λ (x) (+ x y))
In this expression, x is used as part of a function. It can be
said that x is bound to the scope of the lambda expression,
but y is free. You should agree that this is equivalent to:
 (λ z.(+ z y))
If you wanted to do this formally, it would be called an
alpha reduction, and would be written as:
 (λ x.(+ x y)) ->α (λ (z) (+ z y))

Sampa Das / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8255-8258

www.ijcsit.com 8256

3. η- Reduction
Eta reductions are used to eliminate useless variables in
abstractions. Let's look at an example:
 (λ x.(BODY x)) ->η = BODY
In this abstraction, whenever the function is to be used, any
argument will simply be passed to BODY. Hence, this
function is, in essence, equal to BODY. One caveat of eta
abstraction is that a name conflict must be avoided. What
this means is if x is a free variable (i.e., not scoped in a
function abstraction) in BODY itself, then this eta
reduction is not valid, as it would be changing the scope of
x. In order to avoid this, an alpha reduction must be
performed before the eta reduction. .Eta reductions are very
rarely used, and in most applications of the lambda
calculus, it can be avoided completely.[5] Eta reductions
are used to eliminate useless variables in abstractions. Let's
look at an example:
 (λ x.(BODY x)) ->η = BODY
In this abstraction, whenever the function is to be used, any
argument will simply be passed to BODY. Hence, this
function is, in essence, equal to BODY. One caveat of eta
abstraction is that a name conflict must be avoided. What
this means is if x is a free variable (i.e., not scoped in a
function abstraction) in BODY itself, then this eta
reduction is not valid, as it would be changing the scope of
x. In order to avoid this, an alpha reduction must be
performed before the eta reduction.
Eta reductions are very rarely used, and in most
applications of the lambda calculus, it can be avoided
completely.

3.APLLICATION OF LAMBDA CALCULUS
ARITHMATIC
We expect from a programming language that it should be
capable of doing arithmetical calculations. Numbers can be
represented in lambda calculus starting from zero and
writing “suc(zero)" to represent 1, “suc(suc(zero))" to
represent 2, and so on. In the lambda calculus we can only
define new functions. Numbers will be defined as functions
using the following approach: zero can be defined as
 λ s:(λ z:z)
This is a function of two arguments s and z. We will
abbreviate such expressions with more than one argument
as
 λ sz:z
It is understood here that s is the first argument to be
substituted during the evaluation and z the second. Using
this notation, the first natural numbers can be defined as
 1 = λ sz:s(z)
 2 = λ sz:s(s(z))
 3 λ sz:s(s(s(z)))
 and so on.

a.Addition
Adding numbers can be understood as automating the
successor function. If we
want to add 5 to the number 3, this can be interpreted as
using the successor

function five times on 3. (Or the other way around, because
3+5 = 5+3.) Fortunately, our way of writing numbers has
this automation already built in. As we have pointed out
above, evaluating a number n means that we replicate the
expression after it n times. If the expression after it is the
successor function, it will be spelled out n times, and if we
resolve it, then the successor function will be applied n
times to the number expression after it.[6]
3+5 = 3S5 = λ sz.s(s(s(z))) (λ abc.b(abc)) λ
xy.x(x(x(x(x(y)))))
If you feel playful, you may try and see that it resolves
properly to
 8: λ xy.x(x(x(x(x(x(x(x(y)))))))) [7]

b. Multiplication

A similarly clever function yields multiplication:
MULTIPLY :⇔ λ abc.a(bc)
This function takes two arguments, for instance like this:
2 x 3 = MULTIPLY 2 3 :⇔ (λ abc.a(bc)) (λ sz.s(s(z))) (λ
xy.x(x(x(y))))
= λ c.(λ sz.s(s(z)))((λ xy.x(x(x(y))))c)
= λ cz.((λ xy.x(x(x(y))))c)(((λ xy.x(x(x(y))))c)(z))
= λ cz.(λ y.c(c(c(y)))) (c(c(c(z))))
= λ cz.c(c(c(c(c(c(z)))))) = 6

 we see that our multiplication function takes its two
arguments (2 and 3) and arranges them like this:

MULTIPLY 2 3 = (λ abc.a(bc)) 2 3 = λ c.2(3c)

Resolving this gives us λ cz.(3c)(3c(z)). This is equivalent
to applying the second c three times to the z: c(c(c(z))), and
applying the first c three times to that result: c(c(c(
c(c(c(z)))))). Together with the function head λ cz, it
conveniently results in 6 (i.e., six times the
application of the first argument to the second).The best
way to get rid of any remaining bewilderment will be if
you take a piece of paper and a pen and try a few
multiplications yourself. [6]

4.CONCLUSION
The Lambda Calculus cannot do all of mathematics,
because many mathematical problems have no solution,
and many mathematical formulas cannot be computed
(which is not the same thing). The Lambda Calculus can
also be used to compute neural networks with arbitrary
accuracy, by expressing the strengths of the connections
between individual neurons, and the activation values of
the neurons as numbers, and by
calculating the spreading of activation through the network
in very small time.

REFERENCE
1. H. P. Barendregt. The Lambda Calculus, its Syntax and

Semantics.NorthHolland, 2nd edition, 1984
2. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge

University Press, 1989.
3. The New York University “Lambda Tutorial” [Online4. Gerold]

Sampa Das / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8255-8258

www.ijcsit.com 8257

4. G. Michaelson, An Introduction to Functional Programming through
Lambda Calculus,Addition-wesley,Wokingham,1998

5. http://www.cs.unr.edu/~sushil/class/326/notes/wk7.1.html
6. G. Revesz, Lambda-Calculus Combinators and Functional

Programming, Cambridge University Press, Cambridge, 1988,
chapters 1-3.

7. P. M, Kogge, The Architecture of Symbolic Computers, McGraw-
Hill, New York,1991, chapter 4.

AUTHOR PROFILE
Sampa Das received the B.E. degrees in Computer Science Engineering
from National Institute of Technology in 2007 and pursuing M Tech from
Sikkim Manipal Institute of Technology. Working as a Asst. Prof. in
Siliguri Institute Of Technology since 2008 to till now.

Sampa Das / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8255-8258

www.ijcsit.com 8258

