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Abstract: : In this work, we present preliminary study of 
Lambda Calculus in the field of computability .Originally 
developed in order to study some mathematical properties of 
effectively computable functions, this formalism has provided 
a strong theoretical foundation for the family of functional 
programming languages. We show how to perform some 
arithmetical computations using the lambda calculus and how 
to dene recursive functions, even though functions in lambda 
calculus are not given names and thus cannot refer explicitly 
to themselves. 
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1. INTRODUCTION

The lambda calculus is a theory of functions as formulas. It 
is a system for manipulating functions as 
expressions[1].Lambda calculus(also written as λ)is a 
formal system in mathematical logic and computer science 
for expressing computation based on function abstraction 
and application using variable binding and substitution 
.The name is derived from Greek letter lambda(λ) . Lambda 
Calculus has played an important role in the development 
of theory programming language. Counterparts to lambda 
Calculus. We have several options regarding types in the 
lambda calculus. 
 Untyped lambda calculus. In the untyped lambda calculus, 
we never specify the type of any expression. Thus we never 
specify the domain or co-domain of  any function. This 
gives us maximal flexibility. It is also very unsafe, because 
we might run into situations where we try to apply a 
function to an argument that it does not understand. 
 Simply-typed lambda calculus. In the simply-typed lambda 
calculus, we always completely specify the type of every 
expression. This is very similar to the situation in set 
theory. We never allow the application of a function to an 
argument unless the type of the argument is the same as the 
domain of the function. 
Thus, terms such as f (f ) are ruled out, even if f is the 
identity function. 

Polymorphic typed lambda calculus. This is an 
intermediate situation, where we may specify, for instance, 
that a term has a type of the form X → X for all X, without 
actually specifying X[2]. 

2.EXPRESSING LAMBDA CALCULUS

The lambda calculus is a formal language. The expressions 
of the language are called lambda terms, and we will give 
rules for manipulating them. 

A. THE SYNTAX 
The syntax of the lambda calculus defines some 
expressions as valid lambda calculus expression  and some 
as  invalid,  just  as  some  strings  of characters are valid C 
programs and some are not.  A  valid  lambda  calculus 
expression  is called a "lambda term" .The  following  three 
rules  give  an inductive definition that  can  be  applied  to 
build  all syntactically valid lambda terms: 
• A variable, x  , is itself a valid lambda term
• If  t  is a lambda term, and  is a variable ,then (  λx.t  ) is
a  lambda  term  (called a lambda abstraction); 
• If t and s are lambda terms, then (ts) is a lambda term
(called an application). 
Nothing else is a lambda term. Thus a lambda term is valid 
if and only if it can be obtained by repeated  application  of 
these  three  rules. However,  some parentheses  can  be 
omitted according  to  certain  rules.  For example, the 
outer most parentheses are usually not written. 

a. The Lambda Variables
When  a  variable  occurs  in  the  body  of  an abstraction 
that  uses  the  variable  in  its parameter, the occurrence of 
this variable inside the  body  is  called  bound,  because 
the occurrence is bound to this binder abstraction. If a 
variable occurs at a position such that there is no  such 
outer  binding  abstraction,  the occurrence  of  the  variable  
is  called  free.  For example, in term (λx.x) y, y is free. In 
λy.xy, x is free. In term λx.x x, all occurrences of x inside 
the body are bound. In (λx.x)x, first occurrence of x (inside 
the body) is bound, and the second occurrence  is  free.  In 
λz.λx.λy.x  y  z,  the occurrences of x, y and z in the body 
have their respective  binder  abstractions.  After 
reducing(λz.λx.λy.x y z)a, where a is just a variable term, 
we  obtain  (λx.λy.xya),  in  which,  a  is  a  free variable. 
  Free and bound variables 
In calculus all names are local to definitions. In the 
function λx:x we say that x is bound" since its occurrence 
in the body of the dentition is preceded by x. A name not 
preceded by a  is called a free variable". In the expression 
(λx:xy) the variable x is bound and y is free.  

Fig: Lambda Function 
Source:.http://www.cs.unr.edu/~sushil/class/326/notes
/wk7.1.html 
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In the expression 
                          (λx:x) ( λy:yx) 
 the x in the body of the first expression from the left is 
bound to the first λ. The y in the body of the second 
expression is bound to the second λ and the x is free. It is 
very important to notice that the x in the second expression 
is totally independent  of the x in the first expression. 
Formally we say that a variable <name> is free in an 
expression if one of the following three cases holds: 
   * <name> is free in <name>. 
  * <name> is free in λ <name1 > : <exp> if the   identifier 
<name>!<name1 > and <name> is free in <exp>. 
  * <name> is free in E1E2 if <name> is free in E1 or if it is 
free in E2. A variable <name> is bound if one of two cases 
holds: 
* <name> is bound in  <name1 > : <exp> if the identifier 
<name>=<name1 >or if <name> is bound in <exp>. 
* <name> is bound in E1E2 if <name> is bound in E1 or if 
it is bound in E2. 
It should be emphasized that the same identifier can occur 
free and bound in the same expression. In the expression 
                                  (λx:xy) ( λy:y) 
the first y is free in the parenthesized sub expression to the 
left. It is bound in the sub expression to the right. It occurs 
therefore free as well as bound in the whole expression [4]. 
 
b. LAMBDA ( λ ) REDUCTION 
The key notion of the λ-calculus is that it is possible to 
arrive at logically equivalent expression by means of a 
process called λ-reduction. In the usual case, λ-reduction is 
actually a combination of three distinct reduction 
operations, each of which is discussed below. The key 
operation, the one that does the heavy lifting, is called β-
reduction, and that is operation we will discuss first. By the 
way, some people say "λ-conversion" instead of λ-
reduction; others reserve "λ-conversion" to refer 
specifically to a single step in a series of reductions. 
 
1. β - REDUCITON 
Nothing happens until a λ-binding form occurs in 
construction with an argument, thus: ((λ 
var.body).argument) Once a λ-based binding form occurs 
with an argument like this, it is possible to reduce the 
expression to a simpler form by means of β-reduction 
(sometimes with the help of α-reduction and η-reduction). 
The main idea of β-reduction is to replace every free 
occurrence of the variable "var" in "body" with 
"argument". For instance, in the form below, both 
occurrences of "var" in the body are free. Consequently, 
after β-reduction, both occurrences get replaced with 
"argument", and the result is significantly simpler than the 
original expression. 
The beta reduction is perhaps the most intuitive reduction, 
but is also the most important in analyzing lambda 
expressions. It is, in essence, a direct substitution, and it 
goes something like this: 
((λ  (x) . BODY) a) ->β BODY [x λa]= BODY 
Lets look at this step by step. 
 ((\ (x) . BODY) a) 

As you should already know, this first part defines a 
function which takes an argument 'x' and puts it into 
'BODY'. In this instance, we are looking to pass 'a' to that 
function. This is the expression on which we want to 
perform our beta reduction. 
 ->β BODY [x λ a] = BODY 
Here is our beta reduction. First we explicit say we are 
doing a beta reduction, then the BODY [x\a] part means 
"In 'BODY', I am substituting all instances of 'x' with 'a'". 
Because there is no 'x' in BODY, no substitution is actually 
made. After this (or on the next line) you write the result. 
 
2. α - REDUCITON 
Unfortunately, applying β-reduction indiscriminately can 
cause trouble when the body contains binding operators. 
Following the rules of β-reduction, we replace "x" with "z" 
for a result of "(λ y1 (z y1))", and this result is correct. 
Note that in the result the λ-operator binds exactly one 
variable in the body, and the other variable remains free. 
But consider what happens in this closely parallel but 
slightly different situation: 
((λ x (λ y (x y))) y) β-reduction: substitute "y" in for "x" in 
the body "(λ y (x y))" ==>(λ y (y y)) [Wrong result!]))", in 
which the λ-operator binds two variables, not just one, 
which is not correct. The argument variable "y" is said to 
have been `captured' by the inner λ-operator; another 
commonly-used expression for this kind of situation is 
`variable collision'. The solution is to make use of 
alphabetic variants. Roughly, two expressions are 
"alphabetic variants" if they are identical except perhaps 
for the choice of variable symbols. For instance, the 
following expressions are alphabetic variants of one 
another: 
                      (λ x (λ y (x (+ y x)))) 
                      (λ z (λ y (z (+ y z)))) 
To create an alphabetic variant for an expression of the 
form "(λ var body)", simply replace each free occurrence of 
"var" in the expression with "new", where "new" is a 
variable symbol not occurring anywhere in "body". (Since 
expressions have finite length, as long as there is an infinite 
supply of variable symbols, it will always be possible to 
find a suitable variable to serve the role of "new".) This 
transformation is called α-reduction. The crucial property 
of the reduced form is that each λ operator binds the same 
number of variables in the same positions within its 
body.[3]. 
An alpha reduction is hardly a reduction at all. It could be 
otherwise called, "renaming," but must be done with some 
care to make sure that one does not alter the scope of a 
variable when renaming it. Lets look at an example: 
               (λ (x) (+ x y)) 
In this expression, x is used as part of a function. It can be 
said that x is bound to the scope of the lambda expression, 
but y is free. You should agree that this is equivalent to: 
               (λ z.(+ z y)) 
If you wanted to do this formally, it would be called an 
alpha reduction, and would be written as: 
    (λ x.(+ x y))  ->α (λ (z) (+ z y)) 
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3. η- Reduction 
Eta reductions are used to eliminate useless variables in 
abstractions. Let's look at an example: 
 (λ x.(BODY x)) ->η  = BODY 
In this abstraction, whenever the function is to be used, any 
argument will simply be passed to BODY. Hence, this 
function is, in essence, equal to BODY. One caveat of eta 
abstraction is that a name conflict must be avoided. What 
this means is if x is a free variable (i.e., not scoped in a 
function abstraction) in BODY itself, then this eta 
reduction is not valid, as it would be changing the scope of 
x. In order to avoid this, an alpha reduction must be 
performed before the eta reduction. .Eta reductions are very 
rarely used, and in most applications of the lambda 
calculus, it can be avoided completely.[5] Eta reductions 
are used to eliminate useless variables in abstractions. Let's 
look at an example: 
 (λ x.(BODY x))  ->η = BODY 
In this abstraction, whenever the function is to be used, any 
argument will simply be passed to BODY. Hence, this 
function is, in essence, equal to BODY. One caveat of eta 
abstraction is that a name conflict must be avoided. What 
this means is if x is a free variable (i.e., not scoped in a 
function abstraction) in BODY itself, then this eta 
reduction is not valid, as it would be changing the scope of 
x. In order to avoid this, an alpha reduction must be 
performed before the eta reduction. 
Eta reductions are very rarely used, and in most 
applications of the lambda calculus, it can be avoided 
completely. 
 

3.APLLICATION OF LAMBDA CALCULUS 
ARITHMATIC 
We expect from a programming language that it should be 
capable of doing arithmetical calculations. Numbers can be 
represented in lambda calculus starting from zero and 
writing “suc(zero)" to represent 1, “suc(suc(zero))" to 
represent 2, and so on. In the lambda calculus we can only 
define new functions. Numbers will be defined as functions 
using the following approach: zero can be defined as 
                              λ s:( λ z:z) 
This is a function of two arguments s and z. We will 
abbreviate such expressions with more than one argument 
as 
                                  λ sz:z 
It is understood here that s is the first argument to be 
substituted during the evaluation and z the second. Using 
this notation, the first natural numbers can be defined as 
         1 =   λ sz:s(z) 
        2 =   λ sz:s(s(z)) 
        3    λ sz:s(s(s(z))) 
         and so on. 
 
a.Addition 
Adding numbers can be understood as automating the 
successor function. If we  
want to add 5 to the number 3, this can be interpreted as 
using the successor  

function five times on 3. (Or the other way around, because 
3+5 = 5+3.) Fortunately, our way of writing numbers has 
this automation already built in. As we have pointed out 
above, evaluating a number n means that we replicate the 
expression after it n times. If the expression after it is the 
successor function, it will be spelled out n times, and if we 
resolve it, then the successor function will be applied n 
times to the number expression after it.[6] 
3+5 = 3S5 = λ sz.s(s(s(z))) (λ abc.b(abc)) λ 
xy.x(x(x(x(x(y))))) 
If you feel playful, you may try and see that it resolves 
properly to  
             8: λ xy.x(x(x(x(x(x(x(x(y)))))))) [7] 
 
b. Multiplication 
 
A similarly clever function yields multiplication: 
MULTIPLY :⇔ λ abc.a(bc) 
This function takes two arguments, for instance like this: 
2 x 3 = MULTIPLY 2 3 :⇔ (λ abc.a(bc)) (λ sz.s(s(z))) (λ 
xy.x(x(x(y)))) 
= λ c.(λ sz.s(s(z)))((λ xy.x(x(x(y))))c) 
= λ cz.((λ xy.x(x(x(y))))c)(((λ xy.x(x(x(y))))c)(z)) 
= λ cz.(λ y.c(c(c(y)))) (c(c(c(z)))) 
= λ cz.c(c(c(c(c(c(z)))))) = 6 
                    
 we see that our multiplication function takes its two 
arguments (2 and 3) and arranges them like this: 
 
MULTIPLY 2 3 = (λ abc.a(bc)) 2 3 = λ c.2(3c) 
 
Resolving this gives us λ cz.(3c)(3c(z)). This is equivalent 
to applying the second c three times to the z: c(c(c(z))), and 
applying the first c three times to that result: c(c(c( 
c(c(c(z))) ))). Together with the function head λ cz, it 
conveniently results in 6 (i.e., six times the  
application of the first argument to the second).The best 
way to get rid of any remaining bewilderment will be if 
you take a piece of paper and a pen and try a few 
multiplications yourself. [6] 
 

4.CONCLUSION 
The Lambda Calculus cannot do all of mathematics, 
because many mathematical problems have no solution, 
and many mathematical formulas cannot be computed 
(which is not the same thing). The Lambda Calculus can 
also be used to compute neural networks with arbitrary 
accuracy, by expressing the strengths of the connections 
between individual neurons, and the activation values of 
the neurons as numbers, and by 
calculating the spreading of activation through the network 
in very small time. 
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